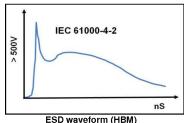


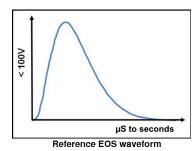
Immense Advance Tech.

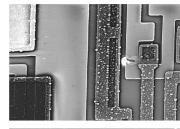
摘要

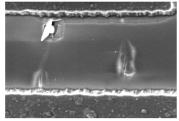
多數 IC 的失效主要都是電氣過應力(EOS)造成的結果,本文解釋 EOS 常見的成因,以及 IC 受到 EOS 時是如何受損造成整體失效,並提出預防改善的設計方法。


1. 概述

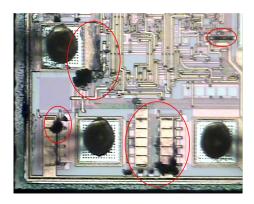
每個電子元件都有其額定電壓上限,工程師依照其設計需求挑選合適的元件設計,然而實 際驗證過程卻發生失效,電路越是複雜,失效表現也越是奇怪,想要找出是哪個元件失效有 時是非常困難的,不會總是擊穿、斷路或者從表面尋找燒毀痕跡這麼容易。


然而,大多數 IC 失效的原因都是輸入電壓過高,以往的 EOS 案例中,客戶使用的輸入 電壓都在額定電壓之下,仍造成 IC 失效,尤其是使用 DC Adapter 的案例,在熱拔插的瞬間 甚至會產生火花,即便 IC 沒有失效,拔插造成的火花也有安全疑慮,本文將探討 EOS 如何 造成, 並提供預防的解決方案。


2. 什麼是 EOS? 跟常見的 ESD 有什麼差別?


EOS 為 Electrical Over Stress 的縮寫,指的是電壓、電流或者功率超過元件上限造成元 件失效。ESD 是 Electrical Static Discharge,指的是靜電放電的現象,雖然 ESD 也與電氣 過應力的概念類似,但兩者的差異有不同的定義,EOS 是微秒級或更長時間的且 100V 以內 的過應力,而 ESD 是 500V 以上,在奈秒、皮秒的時間內放電。

ESD waveform (HBM)

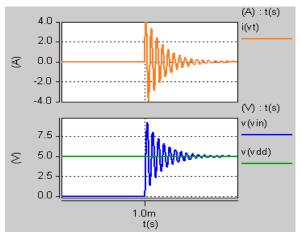


ESD Damage

ESD 造成的損壞通常難以察覺,必須使用電子顯微鏡才能觀察到,而在 EOS 損毀的 IC 中,去 Decap 分析即可較明顯的注意到鍵合線金屬變色、金屬層熔化、ESD 保護電路周圍 焦燒等現象。在 ESD 方面,艾特先進的所有電源 IC 皆通過美國軍用標準 MIL-STD-883G Method 3015.7 人體放電模型(HBM) ESD Class 2 保護認證。

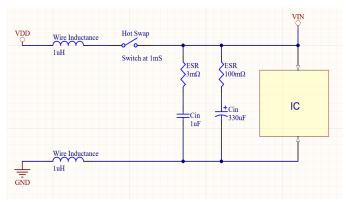
Immense Advance Tech.

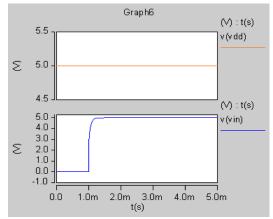
EOS Damage (AT5221)


EOS Failure Waveform

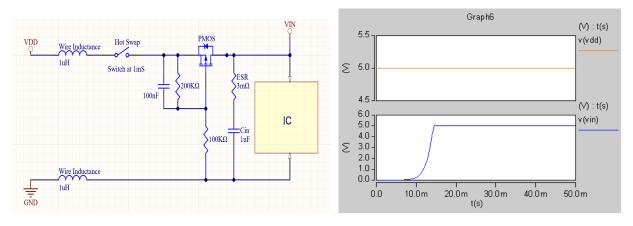
3. EOS 成因與預防

在許多實際案例中,經常遇到電壓電流都在額定額定範圍內,仍造成 EOS 失效的情況,主要原因幾乎是電源開關時的過衝電流(Overshoot)所導致,這也是為什麼熱插拔時造成火花的原因,導線的線電感與電容的電流相位差導致震盪所造成的 Voltage Spike,而當導線越長、電容的 ESR 越低(MLCC)時,震盪的幅度也愈大。


從上述的說明,可以了解到預防 EOS 有三大方法,1. 提高電容的 ESR、2.減少導線長度 以及 3.軟啟動設計。下文將針對 1;3 兩點提出簡單的改善實例。


4. 提高電容的 ESR - 並聯電解電容

電源開關時所導致的電湧(Spike)可以用 RLC 串聯電路解釋,詳細的公式推倒在這邊不詳述,以結論而言,電湧幾乎是 MLCC 較低的電容值以及過低的 ESR(輸入阻抗)所造成,因此,在輸入 Cin 端並聯電解電容就是一個相當不錯的方法。



Shunt 330uF ECAP

5. 軟啟動電路-利用 MOSFET 的做簡易的軟啟動電路

在非得要熱插拔的應用,串連一個電解電容並不能避免熱插拔的火花,甚至會有加劇的情況,而軟啟動(Soft start)是最有效避免浪湧電流損壞 IC 最有效的方式,而市面上有許多種不同類型的軟啟動方案可以選擇,一種常見的方式是在輸入端串聯 NTC 熱敏電阻;NTC 是Negative Temperature Coefficient 的縮寫,也就是負溫度係數,其特性是電阻值會隨著溫度上升而減少,這個特性剛好適合電路的軟啟動,啟動時較高的電阻值(>10K)能抑制浪湧電流,隨後因為導通消耗的功率使溫度上升而減少功率的浪費。

使用 Mosfet 代替 NTC 熱敏電阻做軟啟動;熱敏電阻的尺寸、電流、功率浪費上都並不適合現在講求精小節能的設計,而 Mosfet 在導通時低至數十 mΩ 以及其導通延遲時間恰好成為最為合適設計軟啟動的元件,需要的零件也僅僅是電容跟電阻的搭配。視使用狀況選擇 MOS的耐壓,一般建議使用耐壓為輸入電壓兩倍以上的 Mosfet 以及電容做為軟啟動控制。

6. 總結

IC 失效經常來自於開關電源、熱插拔時由於其線電感以及低 ESR 的電容諧振形成的電氣過應力造成。在電路設計時需要謹慎注意這種情況的發生,確保應用時不會出現超出 IC 的額定電壓的危險。